Using Temperature Data to Develop A Standard Windrowing Protocol

Shawn Hawkins
Why Windrow?

• Quality bedding material
 – Scarcity
 – Rising Cost

• Improve litter quality
 – Pulverize cake
 – Heat & dry litter
 • Improve litter tilth
 • Pathogen control
 – Improve bird performance?
Windrowing Method(s)

- Methods abound – no standard technique
- Lack of data to inform what we should do
 - Should I prep litter for windrowing?
 - What size windrow should I make?
 - How long should I wait before turning?
 - How many turns should I perform?
 - How do I know it’s working?
 - Are there additives that improve heating?
Heating is Your Primary Goal

- Two important components
 - Temperature
 - Time

- No direct information for windrowed litter

- Decades of data for composted biosolids
 - $122^\circ\text{F} \geq 1 $ day
 - $145^\circ\text{F} \geq 1 $ hour

Which one is better?
Study Design

- 4 Houses, 10 sensors/house, 4 events
Windrow Heating Data

MidDepth

Temperature, °F

Initial Windrow (Turn 1) Turn 2 Turn 3

MidDepth

Ambient
Grow

Initial Windrow (Turn 1) Turn 2 Turn 3
Windrow Heating Data

MidDepth vs Floor

Temperature, °F

Initial Windrow (Turn 1)

Turn 2

Turn 3

Floor

MidDepth

Ambient

Grow

Initial Windrow (Turn 1) Turn 2 Turn 3
Windrow Heating Data

MidDepth vs Floor vs Surface

Initial Windrow (Turn 1)

Turn 2

Turn 3

Temperature, °F

Floor

MidDepth

Surface

Ambient

Grow

Initial Windrow (Turn 1) Turn 2 Turn 3

University of Tennessee Institute of Agriculture
This is Why You Have to Turn

![Graph showing peak temperatures for Floor, MidDepth, and Surface with different values and statistics.]
Heating “Success” Rate and How Long It Takes to Get There

<table>
<thead>
<tr>
<th></th>
<th>Turn 1</th>
<th>Turn 2</th>
<th>Turn 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface</td>
<td>122 ≥ 1 day</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Floor</td>
<td>2.2 Days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mid-depth</td>
<td>2.9 Days</td>
<td>145 ≥ 1 hour</td>
<td></td>
</tr>
</tbody>
</table>

University of Tennessee Institute of Agriculture
Moisture Primarily Controls Windrow Heating Performance

Moisture Content, %

20 25 30 35 40 45 50 55

Floor Peak Temperature, °F

60
80
100
120
140
160

Turn 1
Turn 2
Turn 3
Trend Line
Windrow Size Affects Heating Performance
Biochar As a Litter Additive

• What is biochar?
 – Residual carbon after plant materials are heated without oxygen present
 – Some indication it is beneficial soil additive
 – Few compost studies show improved heating
 – Adsorbs ammonia

• Two types tested (4,000 dry lbs/house)
 – Proton Power (mixed hardwoods)
 – City of Lebanon (Asian hardwoods-pallets)
City of Lebanon Biochar
Biochar Didn’t Improve Heating
Windrowing Causes Higher Ammonia Than De-caking

↓

Use Full Dose Acidifier and Ventilate Adequately, Biochar Did Not Reduce Ammonia
Take Home Messages

1. **Moisture is Critical**
 1. Don’t de-cake or till prior to windrowing
 2. Start windroweing ASAP
 3. Turn as soon as heat standard is met
 4. Ventilate minimally

2. **Temp varies within a windrow**
 a) **Surface** never reaches heat standards
 b) **Floor** usually reaches heat standards
 c) **Mid-Depth** always reaches heat standards
Take Home Messages

4. Make big windrows (16-24” deep)

5. Best heat standard: 122°F for 1 day: measure temp where litter contacts floor, once you hit 122°F, wait one day and turn

6. Perform 2 turns; 3rd good for drying

7. Spread as soon as heating is finished, ventilate to dry/reduce ammonia

8. Biochar doesn’t improve litter heating or reduce ammonia during subsequent flock